

BOILERS AND COMBUSTION CONTROL

Presented By: Kevin Kuretich, P.E. Robert Benz, P.E. **GovEnergy** www.govenergy.gov

- Utility Plant supports
 - 17 million square feet of facilities
 - -51,000 students
 - 25,000 faculty and staff
- Providing
 - 61 MW of power
 - 30,000 Tons of chilled water
 - 200,000 lbs per hour steam

- Voluntary Emissions Reduction Permit (VERP) submitted in August of 2003
- Proposed reducing NOx by approximately 80%
- Accepted by the TCEQ in December of 2003
- Completion March 1, 2007

- Issued Request for Qualifications (RFQ) in May of 2004
- Over 20 firms responded to RFQ
- Four firms, including Benz Air Engineering, interviewed

Technology	Drawbacks
SCR	Expensive, requires ammonia or other chemical, stack modification
Low NOx Burners	Expensive, requires extensive boiler modification resulting in unknown characteristics.
Over-fired Air	Requires boiler modification, increases parasitic load

Technology	Drawbacks
Water / Steam Injection	Water costs, reduced boiler capacity.
Induced Draft FGR	Could not guarantee reductions without water injection
Compu-NOx®	Unanimous Selection

Why Compu-NOx[®]?

- Lowest first cost by more than 50%
- Guaranteed lowest NOx emissions rate
- Improve turndown from 10 1 to 20 1
- Lowest operating cost (boiler operating) costs reduced)
- Shortest down-time requirements

Kevin Kureti

 In fact out of all 20+ **RFQs** received this was the only proposal that could claim an "Investment Pay Back"!

Problem Description

- NOx emission mandates.
- **Higher Fuel Costs**
- Burner Replacement = Uncertainty
 - Unstable operation
 - Inefficient

Innovative boiler control system that matches combustion air, fuel, and flue gas recirculation to provide:

- NOx reduction to below mandated levels throughout boiler operating range
- Higher Efficiency for ROI

$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + Heat$

$O_2 + N_2 \longrightarrow N^- + O^- + NO^-$

40klb/hr non-air preheat Keeler w/Coen Ring Burner

- Fixed speed fan controlled by dampers
- Inaccurate control means high excess air delivered to combustion section of boiler (typically 14-16%).
- High temperatures and abundant oxygen radicals in flame promote NOx formation.
- Flame instabilities at lower loads due to inability to control air flow from fixed speed fans.

- Near Stoichiometric Combustion.
- Little FGR needed for high NOx reduction.
- Air, fuel, and flue gas recirculation flows are metered throughout the boiler's operating range - from hot standby to full load conditions.

Compu-NOx Advantages

- Utilizes existing boiler burners and fans
- Can be integrated into existing plant operating networks
- >100 to one boiler turn-down.
- VFD Combined with Proper PLC Control = Control of Air and Flue gas
- Cubic Reduction of Horsepower
 - 600hp fan will consume 75hp at 50% load---0.6hp at 10% load!

error.

Boiler #3 – University of Texas

- 1950's vintage Babcock & Wilcox Boiler
- 500F Combustion Air Temperature.
 - Competing proposals required eliminating air preheat.
- 4 ring burners (original) and rated for 150,000 lbm/hr
- Compu-NOx installed 2005.
- NOx reduced from 220ppm to 18ppm Natural Gas ullet
- NOx reduced from 320ppm to 28ppm #2 Oil \bullet
- Boiler efficiency increased from 76% to 85%
- Ability to bank boiler results in \$6000.00/day savings
- Simple payback in 2.2 months

Overview and Data Courtesy of The University of Texas at Austin

- Both Emissions reduction and efficiency gains can be achieved through proper boiler control.
- Existing equipment can be utilized to achieve significant value to operating plants.

With proper control "A good burner is a low NOx burner"

- Both boilers surpassed the VERP required reductions both on natural gas and fuel oil
 - Boiler 3 184 ppm to 22.2 ppm
 - Boiler 7 296 ppm to 27.5 ppm
- Efficiency improvements on between 5 and 10% depending on load
- Turndown better than 20 to 1

- Savings from reduction in HP -~\$100,000 annually
- Savings from increased boiler efficiency (lower excess air)
 - -~850,000 annually
- Less than a 2 year payback!!!

Robert Benz

- After control modifications boilers were <u>much</u> more responsive
- Although 20 to 1 turndown possible, water treatment issues surfaced
- Discovered it was possible to "Bank" either boiler
- This allowed a new operating condition

- Savings from reduction in HP slightly higher ~\$110,000 per year
- Savings from "Banking" boiler
 - Over \$2 million annually

- Exceeded required NOx reductions
- Significantly reduced operating costs

Would you like to know more about this session?

- Kevin Kuretich
- University of Texas at Austin
- 215 E. 24th Street, Austin, 78712
- kuretichk@mail.utexas.edu
- Don't forget to fill out and drop off your session evaluations.

- Would you like to know more about this session?
- Robert Benz
- Benz Air Engineering Co. Inc.
- 4061 Silvestri St. Las Vegas, NV 89119
- robert@benzair.com

Don't forget to fill out and drop off your session evaluations!

